A pH-driven transition of the cytoplasm from a fluid- to a solid-like state promotes entry into dormancy

نویسندگان

  • Matthias Christoph Munder
  • Daniel Midtvedt
  • Titus Franzmann
  • Elisabeth Nüske
  • Oliver Otto
  • Maik Herbig
  • Elke Ulbricht
  • Paul Müller
  • Anna Taubenberger
  • Shovamayee Maharana
  • Liliana Malinovska
  • Doris Richter
  • Jochen Guck
  • Vasily Zaburdaev
  • Simon Alberti
چکیده

Cells can enter into a dormant state when faced with unfavorable conditions. However, how cells enter into and recover from this state is still poorly understood. Here, we study dormancy in different eukaryotic organisms and find it to be associated with a significant decrease in the mobility of organelles and foreign tracer particles. We show that this reduced mobility is caused by an influx of protons and a marked acidification of the cytoplasm, which leads to widespread macromolecular assembly of proteins and triggers a transition of the cytoplasm to a solid-like state with increased mechanical stability. We further demonstrate that this transition is required for cellular survival under conditions of starvation. Our findings have broad implications for understanding alternative physiological states, such as quiescence and dormancy, and create a new view of the cytoplasm as an adaptable fluid that can reversibly transition into a protective solid-like state.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spontaneous Emission Spectrum from a Driven Three-Level Atom in a Double-Band Photonic Crystal

Abstract The spontaneous emission spectrum from a driven three-level atom placed inside a double-band photonic crystal has been investigated. We use the model which assumes the upper levels of the atomic transition are coupled via a classical driving field. The transition from one of the upper levels to lower level couples to the modes of the modified reservoir, and the transition from the oth...

متن کامل

Porosity Rendering in High-Performance Architecture: Wind-Driven Natural Ventilation and Porosity Distribution Patterns

Natural ventilation is one of the most essential issues in the concept of high-performance architecture. The porosity has a lot to do with wind-phil architecture to meet high efficiency in integrated architectural design and materialization a high-performance building. Natural ventilation performance in porous buildings is influenced by a wide range of interre...

متن کامل

تحلیل انتقال حرارت مزدوج در ناحیه طول ورودی

In this paper conjugated heat transfer in thermal entrance region through the sinusoidal wavy channel has been investigated. The fluid flow is assumed to be laminar, steady state, incompressible, and hydrodynamically fully developed. A constant heat flux is assumed to be applied on the outer edge of the channel wall. In this study the governing equations including continuity, momentum and energ...

متن کامل

Characterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures

A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...

متن کامل

Characterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures

A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016